Rules of Binary Addition
- 0 + 0 = 0
- 0 + 1 = 1
- 1 + 0 = 1
- 1 + 1 = 0, and carry 1 to the next more significant bit
For example,
00011010 + 00001100 = 00100110 | 1 1 | carries | ||
0 0 0 1 1 0 1 0 | = | 26(base 10) | ||
+ 0 0 0 0 1 1 0 0 | = | 12(base 10) | ||
0 0 1 0 0 1 1 0 | = | 38(base 10) | ||
| ||||
00010011 + 00111110 = 01010001 | 1 1 1 1 1 | carries | ||
0 0 0 1 0 0 1 1 | = | 19(base 10) | ||
+ 0 0 1 1 1 1 1 0 | = | 62(base 10) | ||
0 1 0 1 0 0 0 1 | = | 81(base 10) |
Note: The rules of binary addition (without carries) are the same as the truths of the XOR gate.
Rules of Binary Subtraction
- 0 - 0 = 0
- 0 - 1 = 1, and borrow 1 from the next more significant bit
- 1 - 0 = 1
- 1 - 1 = 0
For example,
00100101 - 00010001 = 00010100 | 0 | borrows | ||
0 0 | = | 37(base 10) | ||
- 0 0 0 1 0 0 0 1 | = | 17(base 10) | ||
0 0 0 1 0 1 0 0 | = | 20(base 10) | ||
| ||||
00110011 - 00010110 = 00011101 | 0 10 1 | borrows | ||
0 0 | = | 51(base 10) | ||
- 0 0 0 1 0 1 1 0 | = | 22(base 10) | ||
0 0 0 1 1 1 0 1 | = | 29(base 10) |
Rules of Binary Multiplication
- 0 x 0 = 0
- 0 x 1 = 0
- 1 x 0 = 0
- 1 x 1 = 1, and no carry or borrow bits
For example,
00101001 × 00000110 = 11110110 | 0 0 1 0 1 0 0 1 | = | 41(base 10) | |
× 0 0 0 0 0 1 1 0 | = | 6(base 10) | ||
0 0 0 0 0 0 0 0 | ||||
0 0 1 0 1 0 0 1 | ||||
0 0 1 0 1 0 0 1 | ||||
0 0 1 1 1 1 0 1 1 0 | = | 246(base 10) | ||
| ||||
00010111 × 00000011 = 01000101 | 0 0 0 1 0 1 1 1 | = | 23(base 10) | |
× 0 0 0 0 0 0 1 1 | = | 3(base 10) | ||
1 1 1 1 1 | carries | |||
0 0 0 1 0 1 1 1 | ||||
0 0 0 1 0 1 1 1 | ||||
0 0 1 0 0 0 1 0 1 | = | 69(base 10) |
Note: The rules of binary multiplication are the same as the truths of the AND gate.
Another Method: Binary multiplication is the same as repeated binary addition; add the multicand to itself the multiplier number of times.
For example,
00001000 × 00000011 = 00011000 | 1 | carries | ||
0 0 0 0 1 0 0 0 | = | 8(base 10) | ||
0 0 0 0 1 0 0 0 | = | 8(base 10) | ||
+ 0 0 0 0 1 0 0 0 | = | 8(base 10) | ||
0 0 0 1 1 0 0 0 | = | 24(base 10) |
Binary Division
Binary division is the repeated process of subtraction, just as in decimal division.
For example,
00101010 ÷ 00000110 = 00000111 | 1 | 1 | 1 | = | 7(base 10) | ||||||||
1 1 0 | ) | 0 | 0 | | 10 | 1 | 0 | 1 | 0 | = | 42(base 10) | ||
- | 1 | 1 | 0 | = | 6(base 10) | ||||||||
1 | borrows | ||||||||||||
| 10 | 1 | |||||||||||
- | 1 | 1 | 0 | ||||||||||
1 | 1 | 0 | |||||||||||
- | 1 | 1 | 0 | ||||||||||
0 | |||||||||||||
| |||||||||||||
10000111 ÷ 00000101 = 00011011 | 1 | 1 | 0 | 1 | 1 | = | 27(base 10) | ||||||
1 0 1 | ) | | | | 10 | 0 | 1 | 1 | 1 | = | 135(base 10) | ||
- | 1 | 0 | 1 | = | 5(base 10) | ||||||||
1 | | 10 | |||||||||||
- | 1 | 0 | 1 | ||||||||||
1 | 1 | ||||||||||||
- | 0 | ||||||||||||
1 | 1 | 1 | |||||||||||
- | 1 | 0 | 1 | ||||||||||
1 | 0 | 1 | |||||||||||
- | 1 | 0 | 1 | ||||||||||
0 |
Notes
- Binary Number System
- System Digits: 0 and 1
- Bit (short for binary digit): A single binary digit
- LSB (least significant bit): The rightmost bit
- MSB (most significant bit): The leftmost bit
- Upper Byte (or nybble): The right-hand byte (or nybble) of a pair
- Lower Byte (or nybble): The left-hand byte (or nybble) of a pair
- Binary Equivalents
- 1 Nybble (or nibble) = 4 bits
- 1 Byte = 2 nybbles = 8 bits
- 1 Kilobyte (KB) = 1024 bytes
- 1 Megabyte (MB) = 1024 kilobytes = 1,048,576 bytes
- 1 Gigabyte (GB) = 1024 megabytes = 1,073,741,824 bytes
No comments:
Post a Comment